Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Respir Res ; 24(1): 58, 2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2261821

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) results in significant hypoxia, and ARDS is the central pathology of COVID-19. Inhaled prostacyclin has been proposed as a therapy for ARDS, but data regarding its role in this syndrome are unavailable. Therefore, we investigated whether inhaled prostacyclin would affect the oxygenation and survival of patients suffering from ARDS. METHODS: We performed a prospective randomized controlled single-blind multicenter trial across Germany. The trial was conducted from March 2019 with final follow-up on 12th of August 2021. Patients with moderate to severe ARDS were included and randomized to receive either inhaled prostacyclin (3 times/day for 5 days) or sodium chloride (Placebo). The primary outcome was the oxygenation index in the intervention and control groups on Day 5 of therapy. Secondary outcomes were mortality, secondary organ failure, disease severity and adverse events. RESULTS: Of 707 patients approached 150 patients were randomized to receive inhaled prostacyclin (n = 73) or sodium chloride (n = 77). Data from 144 patients were analyzed. The baseline PaO2/FiO2 ratio did not differ between groups. The primary analysis of the study was negative, and prostacyclin improved oxygenation by 20 mmHg more than Placebo (p = 0.17). Secondary analysis showed that the oxygenation was significantly improved in patients with ARDS who were COVID-19-positive (34 mmHg, p = 0.04). Mortality did not differ between groups. Secondary organ failure and adverse events were similar in the intervention and control groups. CONCLUSIONS: The primary result of our study was negative. Our data suggest that inhaled prostacyclin might be beneficial treatment in patients with COVID-19 induced ARDS. TRIAL REGISTRATION: The study was approved by the Institutional Review Board of the Research Ethics Committee of the University of Tübingen (899/2018AMG1) and the corresponding ethical review boards of all participating centers. The trial was also approved by the Federal Institute for Drugs and Medical Devices (BfArM, EudraCT No. 2016003168-37) and registered at clinicaltrials.gov (NCT03111212) on April 6th 2017.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Epoprostenol/adverse effects , Prospective Studies , Single-Blind Method , Sodium Chloride , Prostaglandins I , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy
3.
Blood Purif ; 50(2): 150-160, 2021.
Article in English | MEDLINE | ID: covidwho-646291

ABSTRACT

Children seem to be less severely affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as compared to adults. Little is known about the prevalence and pathogenesis of acute kidney injury (AKI) in children affected by SARS-CoV-2. Dehydration seems to be the most common trigger factor, and meticulous attention to fluid status is imperative. The principles of initiation, prescription, and complications related to renal replacement therapy are the same for coronavirus disease (COVID) patients as for non-COVID patients. Continuous renal replacement therapy (CRRT) remains the most common modality of treatment. When to initiate and what modality to use are dependent on the available resources. Though children are less often and less severely affected, diversion of all hospital resources to manage the adult surge might lead to limited CRRT resources. We describe how these shortages might be mitigated. Where machines are limited, one CRRT machine can be used for multiple patients, providing a limited number of hours of CRRT per day. In this case, increased exchange rates can be used to compensate for the decreased duration of CRRT. If consumables are limited, lower doses of CRRT (15-20 mL/kg/h) for 24 h may be feasible. Hypercoagulability leading to frequent filter clotting is an important issue in these children. Increased doses of unfractionated heparin, combination of heparin and regional citrate anticoagulation, or combination of prostacyclin and heparin might be used. If infusion pumps to deliver anticoagulants are limited, the administration of low-molecular-weight heparin might be considered. Alternatively in children, acute peritoneal dialysis can successfully control both fluid and metabolic disturbances. Intermittent hemodialysis can also be used in patients who are hemodynamically stable. The keys to successfully managing pediatric AKI in a pandemic are flexible use of resources, good understanding of dialysis techniques, and teamwork.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/epidemiology , Continuous Renal Replacement Therapy/methods , Critical Care/methods , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/physiopathology , Anticoagulants/therapeutic use , COVID-19/prevention & control , Child , Citrates/therapeutic use , Comorbidity , Continuous Renal Replacement Therapy/instrumentation , Disease Management , Disinfection , Equipment Contamination/prevention & control , Fluid Therapy , Health Services Accessibility , Hemodynamics , Heparin/therapeutic use , Humans , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nephrology/organization & administration , Patient Care Team , Peritoneal Dialysis , Prostaglandins I/therapeutic use , Resource Allocation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL